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ABSTRACT

Extreme value distribution laws are obtained for
the lifetimes of multi-component systems with
replaceable components, under various assumptions
on the asymptotic relationship between number of
components in the system and number of spare
components. Results are given for limiting
distribution laws of order statistics fromn non-
homogeneous samples and samples of random size,
aud applied to the superposition of renewal
processes. An attempt is made to put extreme
value theory into a general framework using the
notion of a coherent structure, and some new
results utilizing this idea are presented.
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CONTRIBUTIONS TO THE THEORY OF EXTREME VALUES
by

Robert Harris

INTRODUCTION

The limiting distribution of the maximum term in a sequence of independ-
ent, identically distributed random variables was completely analysed in a
series of works by many writers, culminating in the comprchensive work of
Gnedenko [6]. Results for order statistics of fixed and increasing rank were
obtained by Smirnov [14], who completely characterized the limiting types and
their domains of attraction. Generalizations of these results for the maximum
term have been made by several writers; Juncosa [10] dropped the assumption of
a common distribution, Watson [15] proved that under slight restrictions the
limiting distribution of the maximum term in a stationary sequence of m-
dependent random variables is the same as in the independent case, and Berman
[2] studied exchangcable random variables and samples of random size. A
bibliography and discussion of applications is contained in the book by Gumbel
19].

This paper extends the classical theory. The second section introduces
a model from reliability theory - essentially a series system with replaceable
components. It is shown that the asymptotic distribution of system lifetime
can belong to one of two types when the number of spares is fixed or of a
smaller order than the total number n of components, as n becomes infinite,
and that these limiting distributions are the same as those obtained by
Gnedenko, Chibisov [4] and Smirnov. Sectlons 3 and 4 deal wi:h the limiting
distribution of order statistics when the assumptions of common distribution

and fixed sample size are dropped. The results of these three sections are
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then applied in Section 5 to the superposition of a large number of renewal
processes and compared to the necessary and sufficient conditions of
Grigelionis [8] concerning closeness to a Poisson process. In particular,

it is shown that randomness of the sample size leads to a point process which
is a mixture of nonhomogeneous Poisson processes. Finally, in Section 6, an
attempt is made to put extreme value theory into a more general framework
using the notion of a coherent structure [1]. As noted there, most of the
classical problems in extreme value theory are contained in the followirg
general question: "Given a coherent structure with a finite nuvmber cf compon-
ents and some procedure to increase the number of components without bound,
what are the possible limiting distributions for the structure lifetime for
given component lifetime distributions?’ For example, the minimum of a set
of n random variables corresponds to the lifetime of a series structure of
n components, and the limiting procedure adds one component at a time to the
structure. In addition, the class of limiting distributions is characterized
for the case of an arbitrary coherent structure when the procedure for expan-

sion is that of repeated composition.
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1. NOTATION AND CLASSICAL RESULTS

Throughout this paper, the distribution function of a random variable X

will be denoted by P{X < x} = F(x) , and the tail of the distribution by,
P(X > x} = P(x) . The abbreviation "d.f." will be used for distribution
function. A d.f. will be called proper if:

lim F(x) = 1 , lim Fx) = 0

X0 X0
snd not all its mass 1s concentrated at one point. Two d.f.'s Fl(x) a.d
Fz(x) are said to be of the same type if there exist constants A > 0 and B
such that: Fl(Ax + B) = F2(x) for all values of x . Unless otherwise stated,
all d.f.'s will be assumed proper and all limiting d.f.'s should be taken to
mean limiting types of d.f.'s. Let X;sXys .2ty X, ... be a sequence of
independent random variables with common distribution F(x) , and let

En = min(Xl,X TG Xn) . Then the limiting d.f. of En belongs to exactly

2’
onc of three types, [6]; that 1s to say, 1f there exist sequences of normalizing
constants {an > 0} and {bn} and a d.f. G(x) such that:

lim P{a;l (Cn - bn) < x}=G(x)

n-H-x©

at each continuity point of G(x) , then G(x) belongs to one of the following

types:
0(1)(x) =0 for x <0
= l-exp [-x*] for x>0 ,a>0
(1.1) | 0(2)(x) = l-exp [-(-x)-ul for x <0, a>0
=1 for x>0

0(3)(x) = l-exp [-exp x] - <X < @
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The domain of attraction ur & limiting d.f. G(x) is the set of all d.f.'s
F(x) such that for suitable choice of normalizing constants {an > 0}

and {bn}

(1.2) 1lim ?n(anx +'bn) - G(x) .

n-ee

By a well-known theorem of Khintchine (e.g., see (7], p. 40), each d.f. can

belong to at most one domain of attraction. Necessary and sufficient condi-
tions were given by Gnederko [6] for a d.f. to belong to the domain of
attraction of 0(1)(x), 0(2)(x) or 0(3)\x) . For example, F(x) is in
the domain of attraction of 0(1)kx) if and only if Jd X, such that

F(xo) =0, F(xo +¢) >0 for each ¢ > 0 and

F(xo + tx) 5
(1.3) Hn ————— = ¢t for all t>0.
x>0+ F(x° + x)

(k)

The kth smallest variable from (xl,xz, a0 Xn) will be denoted by En

so that Esl)

= En ; limiting d.f.'s for these random variables as obtained
by Smirnov and Chibisov will be introduced as needed.

The notation f(x) = 0(g(x)) as x + a will mean |f(x)/g(x)| <k <=
a8 x + a , and f(x) = o(g(>)) as x + a will be used to denote that
f(x)/g(x) +0 as x +a . Likewiae f(x) ~ g(x) as x + a implies that
f(x)/g(x) 1 as x-+a .

®(x) will be used for the standard normal (0,1) d.f.
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2. _STRUCTURES WITH REPLACEMENT

The problem that is investigated here is the following: a system con-
sists of n identical and independent components in series, with m inactive
spare components available which instantaneously replace the components as

they fail, until there are no more spares, whereupon the system fails. The

(m+1)

M , (m+ 1) being the total number

system lifetime will be dewoted by n

of component failures which must occur before system failure. The investiga-
tion is in two parts, corresponding to the cases when m = m(n) is of a
smaller order than n or of the same order as n , and a third subsection
describes how some of the results may be carried over to more general types

of systems. 1t is assumed in this section ti:. F(0-) =0 ,

Extreme Terms

ém+1) §_x} . Then it is shown that the class of limiting

*
Let Gnm(x) = Pin
d.f.'s for the system lifetime as n -+ ~ , with appropriate linear norming
constants, is the same as the limiting d.f.'s of the corresponding order i

statistics provided that m is finite or of smaller order than vn , as in 1

the following two theorems.

Theorem 2.1:

*
The 1limit laws for sequences Gnm(anx + bn) of system lifetime d.f.'s,

with m fixed, are exhausted by the following two types:

QET;(x) =0 for x <0

O

1 -y m-1

(2.1) --——-——(m_l)!/e y dy for x>0, a>0

0 :
x
e

1 - -1
0
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Theorem 2.2:

If m-~cn®, with ¢ >0, 0 <aclk, then the only possible limit

*
d.f.'s for the sequence G_(a x + b ) are:
nm - n n

G(l)(x) = ¢(x)
(2.2) G(z)(x) =0 for x :_Q
= ¢ (Blogx) for x>0 ,8>0
Notice that G(z)(x) is the log normal d.f.

Some preliminary results are needed before the proofs of Theorems 2.1

and 2.2 can be given:

- m n (1k) (1k+l)
(2.3) G_(x)= ) Y I{F ©~ (x) - F (x)( .
on =0 1, + ... + 1 =) kel

Where F(k)(x) is the k-fold convolution of the d.f. F(x) and the inner
summation is over all nonnegative combinations of (11,12, e in) which
sum to j . This formula follows from the superposition of n identical

renewal processes.

The d.f. F(x) will be assumed to be concentrated on the nonnegative

real axis in this section since the concept of component lifetime is meaning-

ful only in this case. Use will be made of the inequality

(2.4) PR < 70, V k21, v x>0,

It is convenient to speak of n '"sockets" in series, each of which must

contair a working component for the system to work. When m 1s not too
large, a key step in the proofs will be to show that the probability of two

or more railures in any socket is negligible as n + = . Define

R




= 4 n\ =n-j
(2.5) G, () jZO (j) ) P )

i.e., the survival probability of an (m + 1) -out-of-n system.

Theorem 2.3:

If m= o(nk) as n »+ o , and if {an > 0} and {bn} are sequences of

normalizing constants such that

_%) as n-=+oo , YV x>0, t.en

F(anx + bn) = o(n

2 %
(2.6) 1lim IGnm(anx + bn) - Gnm(anx + bn)l =0, V x>0.

nr«

The proof of this theorem will depend on the following lemmas.

Lemma 2.1:

(1) The number of ways in which j failures can occur, in such a way

that at most one failure occurs in each socket, 1s (n) g

3
(11) The total number of ways in which j failures can occur, the
number of failures in any socket being arbitrary, is (n * g - 1) c

Proof:

(1) Follows by considering the coefficient of Zj in (1 + Z)n f
(11) Follows by considering the coefficient of 2 i

Q+z+22+ .90 =@q-2)"".

Lemma 2.2:

g

If 0<j<m,and m=o(n

/(S R AR RE S

as n + « , then




Proof:

€
> (1 --E) » for n sufficiently large.
/t-‘ 3

+ exp. [—c2] 5
where ¢ > 0 {5 arbitrary. The result follows on letting ¢ » 0 ,

Proof of Theorem 2.3:

Define the following notation:

STV G R B

2) w6 = P H

D v, ) = P (Fx) - PP gy

nj
4) wnj(x) will be used for all terms of the form:

n (i,) (1,+1)
m {p oo-F k)
kel

where L, + ... 4 1, =3 and at least one of the 1, > 2. Notice

from (2.4) that:

(2.7) 0 j_vnj(x) :_unj(x) , 0 :_wnj(x) 2w (x) .

nj

Now:

—% o= ] o
G ) /B () = [ 2 00 + A w0 Zo oy @) -




m

02 L Angng Z (3)eny @0

n

+ 0, by (2.7) and Lemma 2.2.

Also:

m
0x1- Z (5)Vag @ Lo (5)23

m - men
: jzo (3) tugy 0 - vnj(x)]/jzo (5)eny 0

f'j = o,mﬁf.’ 3 [“nj(X) = vnj(x)]/unj(x)

c1-10 - FP 0 /FE"

<1l-11- F(x)]m , by use of (2.4) .

Now if x 1s replaced by (anx + bn) and the second assumption of the
theorem used, it is seen that the last term approaches zero as n -+ » ,

Combining results:

—k -
Icnm(anx + bn)/Gnm(anx + bn) -1 +0, as n >,

and since d.f.'s are bounded, the theorem is proved.

Proof of Theorems 2.1 and 2.2:

To examine the possible normalizing sequences {an} and {bn} which

satisfy the conditions of Theorem 2.3, it is necessary to consider separately

—— e, -
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the cases where m remains finite or m > « . Suppose first that m remaing

finite. Then Smirnov [14] has shown that in order for

(2.8) Gnm(anx + bn) +> G(x)

for suitable choice of normalizing constants, where G(x) 1s a proper d.f.,

it is necessary and sufficient that

(2.9) vn(x) - nF(an + bn) -+ v(x)

where v(x) 1s a nondecreasing nonnegative function defined by:

v(x)

(2.10) -(m—l—l)'!- e’ ym_1 dy = G(x)

Furthermore, he proved that (up to a linear transformation) the function
v(x) must be one of the three forms x° . (-x)"% or e X , where o 1is an
arbitrary positive constant. The domain of attraction corresponding to the
second form for v(x) consists of d.f.'s which are unbounded below, so that
on using Theorem 2.3 and the nonnegativity assumption on the {Xi} , Theorem
2.1 is proved.

Now suppose that m - cn” , where ¢ >0 , 0 <a < % . Chibigsov [4]

has shown that G_(a x +b ) + G(x) if and only if
nnn n

(2.11) un(x) = m_k {nF(anx + bn) - m} + u(x)

where u(x) 1is defined by the equation.
(2.12) G(x) = ¢(u(x))

and ¢ is the normal (0,1) d.f. The function u(x) must be of the same

&
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type as one of x , Blogx or -Blog|x| , where B > 0 1s an arbitrary
constant, and the domain of attraction corresponding to the third form contains
only d.f.'s which are unbounded below. For a normalizing sequence which sat-
isfies (2.11), it is clear that F(anx + bn) - O(na-l) - o(n-%) ; thus the
conditions of Theorem 2.3 are satisfied and Theorem 2.2 is proved.

Similarly, characterisations of the domains of attraction of these limit
d.f.'s may be made. Note also that one might wish to restrict the limiting
1w itself to correspond to a nonnegative randcm variable, thus eliminating
oric of the types in Theorems 2.1 and 2.2.

The assumption that the spares have the same lifetime d.f. as the original
components is unnecessary; any d.f. F*(x) such that F*(anx + bn) = o(n-%)
will suffice. The appropriate modifications to the proof of Theorem 2.3
present no difficulty.

It would be desirable to relax the restriction a < ¥ which appears in
the conditions of Theorem 2.2. Results may be obtained for a < 2/3 as
described by Lemmas 2.3 and 2.4, but the more general case a < 1 does not
seem amenable to analysis and a counter-intuitive reason for this is given in
Lemmas 2.5 and 2.6.

" "
Let the symbol %% stand for "stochastically greater than'.

Lemma 2.3:

For independent, identically distributed nonnegative component random

variables:

(w) st (m) st _(m)
En 51 g 2 Em

where the £'s are the corresponding order statistics.
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Proof:

The first part of the inequality follows by observing the replacements
themselves may fail, thus giving rise to more failures; the second part by
observing that time to system fallure decreases if the spares are subject to

failure from the initial instant.

Lemma 2.4:

If m-cn® , with ¢>0, % < a < 2/3, then the limit d.f.'s (2.2)

*
are possible for the sequence Gnm(anx + bn) :

Proof:

Suppose that F and {an>0}. {bn} are such that (2.11) and (2.12) hold,

so that
(2.13) F(anx + bn) = mn/n + u(x)/m/n + o(/n/n) .

Then

(n+m) Flax+b)-m
(2.14) BB L um + 0@ ) v et .
/m
Thus both 3;1 (sim) -b_) and a;l (5é:; - b ) have the same limiting d.f.
and hence by Lemma 2.3 so does a;l (ném) = bn) . Thus with Chibisov's results,

the lemma is proved.

It should be noted that although Lemma 2.4 shows that the limiting d.f.'s
(2.2) are possible, it does not rule out other limiting d.f.'s, in constrast

to the results >f Theorems 2.1 and 2.2.

Lemma 2.5:

The number of ways that m failures .an occur in n sockets with at

~most r fallures per socket is
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[m/ (+1)] i/nyfotm-ri-1i-1
emn) = [ DY) ,
n
i=0

where [x] denotes the largest integer less than or equal to x .
Proof:

The form of c(n,m,r) follows by observing that it is the coefficient
of 2" 1in:

Q+z+22+ ...+ ca-2"[h" 0 - ™,

Let ¢(n,m) = (n + : -Il) -~ the total number of ways that m failures
can occur in n sockets.

Lemma 2.6:

If m-~ cn® , where ¢ >0, 0 <a <1, and r 1s fixed, then

-»> @

¢(n,m,r)/e(n,m) -1 as n provided r > [1/(1 - a)] .

Proof:
s n\ [n+m-ri-1-1
Write c¢(n,m,r) a -8 + 8, = +oo (-) a_ , where a, = (i)( o )
and s = [m/(r + 1)] . Then:
't 141 (wmeri-i-1)! _(meri-r-1-2)!
fi —ri-4-1)! meri-r-1-2)!
&, 0 i (m-ri-1-1)! (n-m-ri-r-1-2)!
r+l
> 1 1 {1 +
—-n-1 m-ri-i-1
S 1 1+ B - l , say .
~n m-1 p(n)
Then p(n) 0 as n + = provided (r + 1) > (1 - u)_l . Jow
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le(m,m,r)/c(n,m) - 1] = Iéo -a, ta, - ... (—)sas)/ﬂo - 1
< |(a1 +a, t+ ...t as)/aol
ip+‘)2+...+ps

=p(l - p%)/1-p) >0 as n > ™,

Thus for the case m ~ cn® , 0 <a <1, élthough it is tempting to think

that one neced only consider at most cae failure per socket in the limit,
Lemma 2.6 shows that a large number of the total ways of failure actually in-

volve more than one failure per socket,

Central Terms

The results obtained in the first part of this section are for the
limiting d.f.'s of extreme terms in which the number of spares is of a smaller
order than the number of components in the system; this part treats the cen-
tral terms where the numbers of spares and components are of the same order.
It is shown in Theorem 2.5 that under fairly weak conditions the limiting
d.f. of a;I (nﬁn) = bn) , for appropriate choice of a > 0 and bn y 1s
the normal d.f. For simplicity of notation, it is assumed that m=n -1

although it 1s obvious that Theorems 2.4 and 2.5 hold with slight modifica-

tions when m = m(n) is such that m(n)/n+ X , 0 < XA < =,

Definition:

Fellowing Kolmogorov [11) and Smirnov [14], a sequence {Xn} of random
variables is said to be gtable if A constants a_ such that
P{|Xn - anl <eg}l+1, as n~+ =, for each fixed ¢ > 0 .

Theorem 2.4 demonstrates the stability of the sequence of system life-

nén)‘ under mild restrictions. Some additional notation is needed;

time

Sy
s
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h

let Ni(t) denote the number of component failures in the 1t socket up to

n
and {ncluding time ¢t ,1<4i<n, S (t) = ] N (t) the total number of
=1

¢ failures. Set u(t) = E{Ni(t)} and oz(t) = Var(Ni(t)) as the mean and.
variance of Ni(t) . It is well known that renewal counting functions "1(t)
have finite moments of all orders for each fixed t so that the existence

of u(t) and o(t) 1is guaranteed.

Theorem 2.4:

If u(t) 48 increasing in a neighborhood of t = u-l(l) , then the

s:quence {n:n): is stable.

Proof:

Fix ¢ > 0 and let t. be the unique t such that u(t) = 1 . Then

1

- €< n(") <t, + Cl <=> {Sn(t1 +e€)/n>1>8(t; -¢c)/n

t1 n 1

® *® .

For arbitrary ¢ >0 , P{ISn(t)/n -u(t)] <€}l +1, a8 n=+ e, for all
finite t , by the weak law of large numbers. Thus

* *
P(Sn(t1 +¢)/n > u(t1 +¢€)-€¢)>1, and by choosing ¢ sufficiently small,

*
it is clear that u(t, +¢) -¢ > 1 and so P{S (t; + e)/n>1} »1.
Similarly, P{Sn(t1 - €)/n <1} » 1, so that finally

(n)
(2.15) P l"n - ‘1' <clp+1,

In fact, Theorem 2.4 can be replaced by a stronger result that is

analogous to the strong law of large numbers, viz. Pilim ni“) -t

The proof of this is similar to that of Theorem 2.4 with the strong law of

-1,

large numbers applied to the sum Sn(t) :
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Theorem 2.5:

If u(t) has a positive first derivative u'(t) at t; then

/ﬁ(n(n) -t ) has a limiting normal d.f. with mecan zero and varlance . 3
n 1
2
1]
{oe)) /u' (£)))° .

The proof of this theorem depends on:

Lemma 2.7:

If u(t) 1s continuous at some point t1 , then o(t) is continuous

at tl L]

Proof:

!
* Assume that u(t) 1is continuous at t) then from the following :
representation (e.g., see [1], p. 54)
t

(2.16) oz(t) - Z/u(t - x)du(x) + u(t) - {u(t)}2 o
0

it suffices to show that the first term in this expression -- denoted by

v(t) -- 1is continuous at tl . For small h
(2.17) v(t, +h) - v(e,) = ! |
t.+h t ]
-} u(t1+h-x)du(X) +j[u(t1+h-X) - u(tl - x)]du(x) .
t1 0

The first term in (2.16) is not greater than u(h)[u(t1 + h) - u(tl)] ,

which becomes arbitrarily small as h + 0 by continuity of u at the point

Eqlt

discontinuities at both tl - x and x , for some x , 0 < x < ¢t

The second term will give a nonnegligible contribution only if p has

1 However, {

since

- ——r. o e e
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(2.18) u(t) = J F @,
1=1

this means that F(i)(t) is discontinuous at t, - x , for some 1 , and,

1

F(j)(t) is discontinuous at x , for some j , so that F(i+j)(t) is dis- !
continuous at t1 and this with (2.18) contradicts the hypothesis. Thus,

0 1is continuous at the point t, .

Proof of Theorem 2.5:

For fixed x

A - NE x} - {sn(t1 m) e

(2.19)

- s (t; + x//n) - nu (e + x/vn) . n - oty + x/vn)

/ﬁo(cl + x/v/n) /x'w(tl + x/v/n)

n
Now Sn(tl + x/vn) may be written in the form kzl xnk , where

= Nk(t1 + x/v/n) ; it is clear that the {Xnk} are independent,

xnk
identically distributed and have finite moments of all orders. Thus, a

modification of Liapunov's version of the central limit theorem

(see [12], p. 277) may be applied to give:

S (t1 + x//n) - nu(tl + x/vn)
(2.20) p{-t <up -+ 0(u)
/Eo(tl + x//n)

where, as before, ¢ 1s the normal (0,1) d.f.

Now u(tl + x//n) may be written in the form

(2.21) uley + x//n) = u(e)) + (x//ﬁ)u'(cl) + 0(1//n) ,




as n »+ o , Also, from Lemma 2.7,

(2.22) o(t, + x//n) - o(t;) .

Combining (2.21) and (2.22)

n - nu(tl + x/Vn) xu'(tl)
(2.23) 51 Syt 3

/o, + x/VR) o(ty)

 —d

Since the normal d.f. 1s continuous, the conclusion of the theorem follows by

substituting (2.20) and (2.23) into (2.19).

e i

It should be noted that the proof of the theorem 1s not sensitive to the

assumption of common lifetime d.f. for ec.ch of the original and spare components.

et e it

All that is needed is a central iimit theorem to hold for the sum

Sn(t1 + x//n) and converger.ce of the appropriate se1uence of constants as

L

in (2.23).

Examples: - i
-t ' 2
1. Suppose that F(t) =1 - e , 80 that u(%) =0¢°(t) = At . Then

/ﬁ(nﬁn) = kul) has a limiting normal d.f. wifh mean zero and I

variance A—z . In fact, this result can be obtained quite simply !
by observing that the times between corsecutive failures are in- i
dependent, identically distributed exponential random variables.

2. Noniderntical components. Suppose that the original components have
t

lifetime d.f. Fe(t) = A/f‘(x)dx and the spares have lifetime d.f.
0

F(t) , where F(t) = 1 - (1 + 2at)e 27t

is a gamma d.f. Thus, the

sequence of failures in each socket corresponds to an equilibrium .

renewal process, so that p(t) = At and oz(t) = At/2 + 1/8 e-ax: s




19

Then /r_l(nr(‘n) - A_l) has a limiting normal d.f. with mean zero and

variance (1/2 + 1/8 e"l‘))‘_2 .

k-out-of-n Structures

The methods of this section cau be applicd to more general types of
systems with replaceable components. For example, consider a k-out-of-n
system with m spares where, as before, the component lifetimes are assumed
to be independent and identically distributed. As components fail, they are
immediately detected and replaced by new components until m replacements

have been made; the system fails when k additional failures have occurred,

i.e., k+m 4in all. Let the system lifetime be denoted by ;é:) .
Lemma 2,8:

If k+ m<n, then

(k+m) st _(m) gt (k)
£n si an 53- En

Proof:

The first part of the inequality is proved as in Lemma 2.3, and the
second part by observing that a system with spares survives longer than a

system without spares.

Lemma 2.9:

If k+ m<n, then

(k+m) gt _(m) st (k+m)
En j': an i "n
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Proof:

Only the second part remains to be proved; this follows by noting that
between the mth and (k + m)th failures there are fewe: than n components
liable to failure and so system failure is stochastically larger than in the
case where replacements are continually available.

Making certain assumptions about the behaviour of k = k(n) and m = m(n)

as n + « enables some deductions to be made concerning the limiting d.f.'s

n nk

' of a-l(c(m) - bn) . For example, consider the two cases:

(1) m/p +0,k/fn+Xx,0<)x<1l. By using Lemma 2.8 and the results
of Smirnov [14] concerning limit d.f.'s of central order statistics,
the limiting d.f.'s of system lifetime may be completely character-
ised.

(11) (k + m) finite or (k + m) ~ en® , >0 ,0<a<1/2 . Then
Lemma 2.9 and Theorems 2.1 and 2.2 enable one to describe completely

the possible limiting d.f.'s.

A A At e P

e e e
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3. ORDER STATISTICS FKOM A NONHOMOGENEOUS SAMPLE

In this section, it is shown that the limiting d.f.'s for order statistics
of fixed rank from an independent but not identically distributed sample are
essentially derived from the limiting d.f. of the minimum as in the identical

case. Supposc that Xy has d.f. Fk(x) , then Juncosa [10] has shown

Lemma 3.1:

If A(x) 1is a positive, nonconstant, nondecreasing function such that

for suitable {an > 0} and {bn}

n
(3.1) lim } F (a x +b) = A(x)
nre k=1 n

and
max F, (ax+b)+0, V % .
1<k<n k' n n

then

n
1im P(En > 8 x + bn} = lim kzl Fk(anx + bn) = exp[-A(x)] .

Theorem 3.1:

If the conditions of Lemma 3.1 are satisfied, and m 1is fixed, then

m-1 4
lim P Eém) > a x + bn; = { ZO A—é%l} exp[-A(x)] .
j-

n>®
The following lemmas are needed:

Lemma 3.2:

If u 2 o, /] 0 are such that:




s

-3 e

(1) Ukn 7 Y » unifornly in k , 1 <k <n, and

n
(11) z Vipn > Vsa n->e where u and v are finite, then:
k=1

n
(3.2) z u vV, *uv, as n > o ,
k=1 kn 'kn
Lemma 3.3:
i
If d, >0 1is such that max d. - 0 and d - A(x) , as
kn l<k<n kn kel kn
n -+ o . then:
' Ajgxz
(3.3) YmJ d d ...d =
1P k2n kJn 3!

where X is a sum over all ki such that 1 < kl <k, <

Proof:

The result holds for § = 1, so assume the inductive hypothesis that it

holds up to j -1 . Clearly

n 3 j
(3.4) ) dkn} > A (x) .
=
Also
° 3 ' Terms containing
{ ! dkn} w2 1) de 9% o - de ot ) squares and higher
k=l 1" "2 h| powers of o

It is easy to see that the second term above is asymptotically negligible.

For example:

'2 ]
Jdf 4 ... d < max d - Jd 4 ... d
kln kzn kj—ln 1<k<n kn kln kzn 5-1

Bratasin-

'f
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and the right hand side tends to zero from the inductive hypothesis and the
assunptions of the lemma. The conclusion follows by comparison of 3.4 and

3.5.

Proof of Theorem 3.1:

Let:
(3.6) g ) =ple™, —m-z-lA()
3 nm lgn Xf = in A
§=0
where
% D ik _1-:[k
(3.7) Ay () = Zkzlfk x)F &),

*
and 2 i1s the summation over all terms such that i, +4, 4+ ... + in =]

1 2
*
and ik a0, 1. Now Ajn(anx + bn) may be written in the form z u Voo
where
n 1-i n 1
(3.8) Yrn © I Fk ; » Ven © I Fkk ’
k=1 k=1

r 1is a symbol for the partition r = (i o in) , and the argument is

1,12.
cmitted but understood to be anx + bn . Since urn differs from

n
n ?k(anx + bn) by only a finite number of factors, Lemma 3.1 implies
k=1

(3.9) urn(anx + bn) + exp. [-A(x)] , uniformly in r .

1f dkn is identified with Fk(anx + bn) , the conditions of Lemma 3.3 are

satisfied, and so

]
(3.10) z*vrn(anx + bn) -+ Agfﬁl .
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Application of Lemma 3.2 together with 3.9 and 3.10 then gives: 'ri

§

(3.11) A (ax+ D)+ expl-A(e) » B ;

: ) jn""n n P 3! i

|

The proof of the thcorem is complete. !

t

[

4

i

i

¢

‘ }

N X

k ;

i 5
1
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4, ORDER STATISTICS FROM A SAMPLE OF RANDOM SIZE

Consider a sample (X.,X,, ..., X of independent random variables
p 1°%2 P

)
with common d.f. F(x) , where Nn is a random variable distributed
independently of the {Xi} . Assuming that Nn + o {n probability as

n +» = , the order statistics

Cém) are defined with probability one for

fixed m as n + « . To avold writing conditional expectations it is assumed
below, without loss of generality, that Nn > m . Theorems 4.1, 4.2 and 4.3

characterize the limiting d.f.'s of these order statistics and extend the

results of Berman [2] who obtained the limiting d.f.'s of the maximum under

such conditions. Let:

-1

(4.1) Pin "N_ < y; = A (y)

and assume that there exists a d.f. A(y) , which may be improper, such that

for all y in its continuity set:

(4.2) 1im An(y) = A(y)

nro

To ensure that the limiting d.f.'s are proper, A(y) will be required to

satisfy one of:

(4.3) A(0+) - A(0-) = 0 ; A(») - A(0-) > 0
(46.4) A(0+) - A(0-) <1 ; A(®) - A(0-) =1
(4.5) A(O+) - A(0-) =0 ; A(») - A(0O-) =1,

Theorem 4.1:

If F(x) 1is in the domain of attraction of ¢,,,(x) , then a_l(g(m) -b )
(1) n \"n n

has a limiting d.f. G(x) which is necessarily of the type:

by




26

G(x) =0

m-1 by a,j
2 ] - /jy_)c_l exp [-yx*]dA(y)

where A(y) satisfies condition (4.3).

Proof:
— \
Let G (ax+b ) = Pia l(ﬁ(m -b ) < x{ , so that
nm° n n n \"n nl/ —
= Bl Ny~ o]
(4.6) Gnm(anx + bn) = EN jzo(j)k (anx + bn) (anx + bn)

for

wvhere EN(-) denotes expectation with respect to N and the constants {an}

and {bn} are such that:

4.7) 1im ?“(anx b)) =0 (), Vox .

It is easy to show that 1lim Gnm(anx + bn) =0 for x <0 ; consider one of

the terms in the sum (4.6) with x > 0 :

1(N)?N_j(anx + bn) Fj(anx + bn)} =

(4.8) EN( 3

]
ol BEE R bg) E {N(N—l)...(N—j+Q-N
) N

i(anx + bn) nj

F (anx + bn)} .

From (4.7), lim F(anx + bn) =1 and 1lim nF(anx + bn) = -log®(1)(x) , 8O

for the first factor in (4.8)

]
nF(anx + bn)
F(anx + bn)

(6.9) -+ (- log®(l)(x)}‘1

A

i
¢
3
é




Now

-1 -1
lim Ey TNy - D)L - g+ DTS N} o Figun EN{(n’ln)je'S“ N}
(4.10) = 1im’/yjemsydAn(y)
0
=/ jeﬁsydA(y)
0

for s > 0 , by the extended Helly-Bray lemma. What has been shown so far is:

(-] (=<}

(4.11) fg(y)dAn(y) */g(y)dA(y)
i 0

0

3 3

where g(y) = y- exp[-sy] ; now let gn(y) = y° exp[ny logf(anx + bn)].

Then since -n log i(anx + bn) + ~logd )(x) >0, for x> 0 , it may be

1
shown that gn(y) + g(y) uniformly in y for each fixed x >0 as n+ = ,

with s = -1og®(1)(x) .  Hence

o -]

(4.12) /gn(y)dAn(y) *]g(y)dA(y)
0

0

which is the 1limit of the second factor in (4.8); combining this with (4.6),
(4.9), (4.12) and (1.1), the main part of the theorem follows.

Uniqueness of the limit d.f. follows from Khintchine's th:2orem [7] that
a sequence of d.f.'s {Fn(anx + bn)} can have at most one proper limit type.
(4.3) follows from the conditions G(0+) ‘<1 and G(») = 1 that the limit

d.f. be proper.




WS = Y

Theorem 4.2:

If F(x) 1s in the domain of attraction of 0(2)(x) , then

a;l(gém) - bn) has a limiting d.f. G(x) which is necessarily of the type

G(x) =1 - /—‘lﬁl" exp[-y (-x) "*1dA (y) for x < 0

-] for x>0, a>0
where A(y) satisfies condition (4.4).

Theorem 4.3:

If F(x) 41s in the domain of attraction of 0(3)(x) , then

a;I(Eém) = bn) has a limiting d.f. G(x) which 1is necessarily of the type

m-1 7 X, ]
G(x) =1 - Z jxle exp[-yex]dA(y) -® < X < ™
3=0+
where A(y) satisfies condition (4.5).

The proofs of Theorems 4.2 and 4.3 are analogous to that of Theorem 4,1,

Conditions (4.4) and (4.5) follow by considering G(0-), G(-») and G(-=),

G(+=) respectively.

e e ap——

T e
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.

5. APPLICATION TO SUPERPOSITION OF RENEWAL PROCESSES

Necessary and sufficient conditions for a sum of a large number of re-
newal processes to be close to a (nonhomogencous) Poisson process have been
given by Grigelionis [8]. Le considers n general renewal processes, where
%nr(x) and Fnr(x) are respectively the d.f.'s of time to the first event
and between subsequent events, 1 < r <n . Under the condition
1lim max max {%nr(x) 3 Fnr(x)} = 0, for all x , he proves

n r

Theorem 5.1:

For the superposed process to converge as n *> « to a Poisson process

with parameter A(x) , it is necessary and sufficient that

n .

I F () > M) V x>0,

r=]

It is of interest to know what form the function A(x) may take when

the underlying renewal processes are identical and
F (x) = F () = F(a x + bn) » 1 <r <n, vwhere {an > 0} and {bn} are
suitably chosen constants. F(x) 1is a fixed d.f. on the nonnegative real
axis, and it 18 convenient to assume that F(e) > 0 for € > 0 and take

bn = 0 . The following result is suggested by Theorem 2.1.

Theorem 5.2:

If the sum of n 1identical renewal processes converges to a Poisson
process with parameter A(x) , then A(x) = ax° for some a >0 ,a > 0 .

Moreover, F(x) 1is in the domain of attraction of 0(1)(x) .




T
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Proof:

Observe that the first event in the sum process is the samc as the
minimum of a set of n independent and identically distributed random
variables, so that Gnedenko's results show that this minimum has a limiting
d.f. which is one of those in (1.1). However, the d.f. ¢(2)(x) can be
ruled out because its domain of attraction contains only d.f.'s corresponding
to random variables unbounded below [6]). HMoreover, ¢(3)(x) is a d.f. on
the whole real axis and so cannot generate a renewal process. Thus the
limiting d.f. of the minimum must have a d.f. of the same type as ®(l)(x)
which corresponds to a Poisson process with parameter A(x) = ax°

In fact, the same form for A(x) holds under wider conditions than
those above. Suppose F(x) 1is in the domain of attraction of Q(l)(x) —see

Section 1—— so that

(5.1) 1im F(tx) / F(x) =¢t* , a >0 .
x~+0+

Let

(5.2) %nr<x) = F_(x) = F(yax ,

so that in the terminology of Section 2 one may think of identical components
which are subjected to different levels of stress in different sockets.

Assuming that
T L« T a
(5.3) Z ya s and y_ =0 z Y. ) o

then {f a are chosen to satisfy

«

R
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2 a
(5.4) a_ = {inf x | F(x) > 1/ rz Y )(

it may be shown (sce [10]) that

n
(5.5) Z F(Yranx) + x*
r=1

Hence, Grigelionis' conditions are satisfied, and one has:

Theorem 5. 3:

The sum of n renewal process of the form specified by (5.1), (5.2)
and (5.3) converges to a Poisson process with parameter A(x) = ax”
Now suppose that the number of renewal processes is itself a random vari-

able Nn 2"V~~~ ¢~ the case f order statistics in Section 4. Using the

notation of that section:

Theorem 5.4:

The sum of a random number Nn of identical renewal process of the form
Fnr(x) - F“r(x) = F(anx) , where F(x) satisfies (5.1) and {an > 0} are
suitable constants, converges to a counting process as n + « in which the

d.f. Gm(x) of the time to the mth event is given by

G (x) =0 for x <0
n-1 7, a 3
=1 - Z Sl?rl exp[- ny]dA(y) for x >0
3=0+

n-an < y( satisfies

where A(y) = lim P

(5.5) A(0+) - A(0-) = 0 ; A(=) - A(0-) = 1 .
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Proof:

A corresponding result for order statistics from a random sample has
been proved in Thcorem 4.]; it remalns to be shown that the d.f. of the th
order statistic in such a random sample is asymptotically the same as the
d.f. of the mth event in the superposed process. From (5.5), k and K may
be chosen, 0 < k < K < =, s0 that Pjk < n-an <Kt >1-¢, where € >0
is arbitrary. Then for each Nn in this inte¢rval the asymptotic closeness
of the two limiting d.f.'s in question may be shown as in the proof of
Theorem 2.3. Unconditioning on Nn and letting ¢ -+ 0 , the desired resuit
is obtained.

Theorem 5.4 shows that randomness of the number of renewal processes

leads to counting processes which are mixtures of (nonhomogeneous) Poisson

processes.

Example:

Take a =2 , A(y) =1 - e’ . The limiting d.f.'s are

Gm(x) =0 for x < 0

- {x2/(1 + x2)}m for x>0

S SR VST

'Y
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6. COMPOSITION OF COHERENT STRUCTURES

Many multi-component systems occuring in the field of reliability are
coherent structures (e.g., see [1])). A coherent structure consisting of . n
components €1sCps +ves Cp is described by its structure function ¢(x)
which is 1 if the system works and 0 otherwise, where x = (xl,xz, 2604 xn)
and x, 1is 1 if component ¢ is working and 0 if it is failed. The binary

i i
function ¢ 1s required to sati.fy

(1) Each component c, must be egsential; that is to say, there is
a realization Xpo vees Xy g xi+1, sy X such that
¢(x1, vees Xy g i1 Xip1r tt0o xn) =1 and
¢(xl, rees Xy_q s 0, Xip1r o xn) =0 .
(11)- ¢(§) < ¢(y) for all x = (xl, P xn) and y = (yl, P—— yn)
such that X 2Yy o l <ic<n.
From (1) and (ii) it follows immediately that ¢(1) =1 and $(0) =0,

where 1= (1,1, ..., 1) and 0 = {0,0, ..., 0)

Most of the classical problems in extreme value theory are contained in
the following general question: '"Given a coherent structure with a finite
number of components and some procedure to increase the number of components
without bound, what are the possible limiting d.f.'s for the system lifetime
for given component lifetime d.f.'s?" For example, the minimum of a set of
random variables corresponds to the lifetime of a series structure, and the
maximum likewise corresponds to a parallel structure. The so-called k-out-of-n
structure generate order statistics an? series-parallel and parallel-series
systems give rise to the minimax and raximin (see [3]) of double arrays of
random variables.

In this section, results are obtained when the method of "expanding" the

structure is that of repeated composition. Thus, starting with a system of




T

—— T

" F(t) with binary indicator random variables Xi(t) which are 1 or O ;

Remark:

34

n components, cach component is replaced by a similar system giving a sy:tem
of n2 components, then each component in this system is replaced by a replica
of the original system, giving a system of n3 components, etc. The first
three stages of composition for a three component system are illustrated in
Figure 6.1,

It is assumed that all components are independent and identical. In
particular, let p = P{Xi = 1} be the reliability of each component ¢y
where Xi is the birary random variable designating the state of component
cy The structure function ¢(x) becomes a binary random variable and the |

reliability of the structure will be denoted by h(p) = P{¢(X) = 1} . Now

suppose that the components fail over time and have a common lifetime d.f.

according as component ¢y is in a working or failed state respectively at 4 ||

time t . Then P{Xi(t) = 1} = F(t) and so the system has lifetime d.f. Y

1 - h(F(t)) . The system which results after n compositions has lifetime ) l
(n) = (n) ]

d.f. 1 -h (F(t)) , where h denotes the n-fold composition of the

function h with itself. It is assumed throughout this section that ! |

h(p) # p . Suppose that for suitable {an > 0} and {bn}

6.1) h(“>(‘é(anx +b)) » 800
Then

Lemma 6.1:

If G(x) is a limiting d.f., then h(G(x)) = G(ax + B) for some

a>0, 8.

This lemma generalizes the concept of maximum stable d.f.'s intraduced

by Gnedenko. The relation h(n)(a(x)) = E(an + Bn) for some a >0, 8,

PPN !







—

36

and for all n 1is no more general, since it is implied by the lemma with

a =a" and Bn = (l+a+ ...+ u“nl)B 5

n

Proof:

From (6.1),

h(n+1)(?(anx + bn)) > h(G(x))
and

h(““)(?(anﬂx +b 1)) > E0)

But by Khintchine's theorem [7]), these two d.f.'s must be of the same type,

i.e.,

h(G(x)) = G(ax + B) .

) s, so that

* 8
If ad 1l , set G (x) = G(x + -

6.2) K@ &) = h(c';(x . ——9—-)) = E;(ax + —L) = ¥ (ax)

l1-a
* * 8
If a=1, set G (x) = G(logx) and o = e , so that

(6.3) h(a*(x)) = h(G(log x)) = G(log x + log u*) = 5*(a*x) .

Theorem 6.1:

G(x) 1s a limiting d.f. if and only if G(x) 4is type equivalent to

y(x) or w(ex) , where 1 - ¢(x) 1is a d.f. and

(6.4) h(p(x)) = ¢y (ax) for all x , where a >0, a¢ 1

o

-

.

ity e et teng, e M 3k it el

AT R

B




37

Proof:

The necessity part follows from (6.2), (6.3) and Lemma 6.1. For sufficiency,
notice that each such d.f. is in its own domain of attraction Ly choosing .

-n
a =a bn =0 or a = 1, bn = -n log o respectively.

The following 1s a well-known result (e.g., see (1), p. 199).

" Theorem 6.2

Excluding the trivial case h(p) = p , the reliability function h(p) 1s

one of three kinds

1) h(p) <P for 0 <p <1

(11) h(pp) > p for 0 <p<1

(111) h(p) <vp for 0 <p <P,
=P, for p = P, (h 4s "S-shaped about po")
>p for p, <P <1

* *
Defining h (p) =1 - h(l1 - p) and V¥ (x) =1- p(-x) , it is seen that

h(p) <p = h*(p) >p and

*, % *
(6.5) By (x)) =1-h@Ex)=1- y(-ax) = ¥ (ax) ,
so that it suffices to consider cases (i) and (i11) only.

Lemma 6.2

1f h(p) <p and p(x) satisfies (6.4), then neither of the following

situations can occur

1) a>1l,x 0,0 <px)<1l.

IA

(41) o <1, 0,0c<yx) <1.

%
|v




(1)  y(ax) > v(x) , since ax :.i and ¢ is monotone, and

h(w(x)) < $(x) by the assumptions. Thus with (6.4), a contradic-

tion results. The proof of (ii) i1s similar. Likewise, one can P4

show

Lemma 6. 3:

If h(p) 1is S-shaped about p_ and ¢(x) satisfies (6.4), then

of the following can hold

1) a<l,x>0,0 <ylx)c< P, *
(11) a<l,;(_<_0,po<u’:(x)<l
(1i4) a>1,%x<0,0 <) <p,

A
<
~
1
~
A
[

(iv) a>1,x>0,p

From (1), (i1) and the fact that y(x) is the tail of a proper d.
it is seen that (6.4) cannot hold with a <1 when h(p) 1s S-shaped.

the solutions to (6.4) take one of the following five forms

la) h(p) <p,a>1, p(x) =1 for x <0
0 < y(x) <1 for x> 0 .
1) h(p) <p,a<l, 0 <y(x) <1 for x < 0
v(x) = 0 for x > 0 .
2a) h(p) S-shaped about P, o> 1, y(x) = 1 for
0 < yp(x) < P, for
| 2b) h(p) S-shaped about Py » @ )l S P, < p(x) <1 for
y(x) = 0 for
2c) h(p) S-shaped about Py » &> 1, By p(x) <1 for
0 < y(x) <p for

none

f‘,

Thus
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The class of all solutions to (6.4) can now be gencrated; for cxample:

Theorem 6.3:

The class of all solutions of the form la) may be obtalined by the

following procedure:

1) Pick any a > 1 .

(41) Pick any x, >0 .

(411) Define y(x) in the half-open, half-closed interval (xo.uxO]
8o that it is nonincreasing and not constant over the interval.

f4v)  Extend ¢(x) to the positive real axis by defining
V(x) = h(k){w(a—kx ) , for ukxo <x < ak+lxo , where a negative
index k means the (—k)th composition of the inverse function
n .

Similar procedures may be derived for solutions which are of the other
forms.

It 1s clear that the class of limit d.f.'s thus generated is very large.
In the case of composition of series structures, the class of limit d.f.'s
has been characterized by Mejzler [13] and includes d.f.'s other than those

of the type (1.1). For example, the function

(6.6) v(x) =0 for x <0

= exp(- x3(5 + sin(2n log x'log 2))] for x>0

is the tail of a d.f. and satisfies (6.4) for h(p) = p8 s @=2 .
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